Electric vehicle manufacturers are starting to adopt 48 volt battery electrical systems. The latest specialist EVs will be using components that more power, additional torque, and – with automation and smart engineering – greater intelligence. The potential applications of 48V are exciting, representing a huge innovation in automotive design.
With more technical capability, comes a greater need for power. For specialist vehicles, this need for power only grows. Like passenger vehicles, specialist EVs can reap the benefits of this higher voltage system without the size and/or weight trade-offs. The solution for many is adopting higher-voltage 48V from typical 12V systems. Thanks to advancements in engineering: it has no lighting or surge-requirements and the range is more limited to 30 – 60V.
What is 48 volt and how does it benefit specialist vehicles?
Typical 24 volt systems have been popular in Europe for some time. In the early 2000s, proposals for 42-volt systems fizzled out because of cost concerns and practicality. Compared with 24V, only half as much current is required to get the same power. Today, the industry seems better prepared, thanks to a better understanding of their capabilities.
48V’s limited range of 30-60V has led to its re-emergence. The reason this range is effective, regardless of capping voltages below a 60V cut-off, is because they meet Safety-Extra Low-Voltage (SELV) requirements. 48V can distribute power to your commercial EV components, minimising copper losses without causing unsafe SELV issues. The output can reach 57.6V before the power supply shuts down, and protects your downstream circuitry from damage.
Increase of Cost-Effective Power
In cost-terms, anything higher than 60-volts not only breaches SELV, but becomes more expensive to implement. Designers would need special cabling and wiring – not to mention tighter regulation (you can read about regulations here). 48V systems hit the sweet-spot – providing more efficient power distribution throughout, optimising engine accessories and other electronics on the vehicle. Higher-voltage designs also allow for improved power generation.
The system’s battery is also more efficient. With an integer multiple of the current 12V systems (seen in the commercial vehicle industry) 48V allows for four dependable lead-acid batteries placed in series. Thus eliminating the need for expensive batteries. 48V systems have the benefit of increasing power to components without raising the current – minimising copper, which requires expensive cabling and a loss in transmission.
48V is competent enough in handling EV components without compromising fuel-economising strategies.
Packaging made Easy
Applying 48V in your designs could give you more flexibility in packaging, too. When compared to belt-driven alternatives like the front-end accessory drive (FEAD), components can be packaged at the front of a truck’s engine.
Carl R. Smith, Commercial Manager, Engineering and Customer Support, for Eaton eMobility believes, ‘48V will begin an initial adoption in the commercial truck and agricultural equipment markets within less than five years’. John Deere, for example, already has adopted 48V – introducing it in one of their row-crop planters. This increases speed and eliminates hydraulic lines – another triumph of packaging potential for specialist designers.